Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16334-16345, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617612

RESUMO

The growing concerns about environmental pollution, particularly water pollution, are causing an increasing alarm in modern society. One promising approach to address this issue involves engineering existing materials to enhance their effectiveness. A one-step solvothermal reconstruction approach was used to build an eco-friendly two-dimensional (2D) AlNiZn-LDH/BDC MOF composite. The characterizations confirm the formation of a metal-organic framework (MOF) at the layered double hydroxide (LDH) surface. The resulting synthesized material, 2D AlNiZn-LDH/BDC MOF, demonstrated remarkable efficacy in decontaminating methylene blue (MB), a model cationic dye found in water systems. The removal performance of 2D AlNiZn-LDH/BDC MOF was significantly higher than that of pristine 2D AlNiZn-LDH. This improvement shows the potential to increase the adsorption capabilities of nanoporous LDH materials by incorporating organic ligands and integrating meso-/microporosity through MOF formation on their surfaces. Furthermore, their kinetic, isothermal, and thermodynamic studies elucidated the adsorption behavior of this composite material. The results of synthesized MOF showed excellent removal efficiency (92.27%) of 10 ppm of MB aqueous solution as compared to pristine LDH. Additionally, the as-synthesized adsorbent could be regenerated for six successive cycles. This method holds promise for the synthesis of novel and highly effective materials to combat water pollution, laying the groundwork for potential advancements in diverse applications.

2.
Chem Asian J ; : e202301100, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275189

RESUMO

Doping conventional materials with a second element is an exciting strategy for enhancing catalytic performance via electronic structure modifications. Herein, Mn-doped CdS thin films were successfully synthesized with the aid of the chemical bath deposition (CBD) by varying the pH value (8, 10, and 12) and the surfactant amount (20, 40, 60 mg). Different morphologies like nano-cubes, nanoflakes, nano-worms, and nanosheets were obtained under different deposition conditions. The optimized Mn-doped CdS synthesized at pH=8 exhibited better photoelectrochemical (PEC) performance for oxygen evolution reaction (OER) than pure CdS films, with a maximum photocurrent density of 300 µA/cm2 at an external potential of 0.5 V, under sunlight illumination. The observed performance is attributed to the successful Mn doping, porosity, high surface area, and nanosphere morphology.

3.
Chem Asian J ; : e202301051, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216532

RESUMO

Enhanced electrocatalysts that are cost-effective, durable, and derived from abundant resources are imperative for developing efficient and sustainable electrochemical water-splitting systems to produce hydrogen. Therefore, the design and development of non-noble-based catalysts with more environmentally sustainable alternatives in efficient alkaline electrolyzers are important. This work reports ferrocene (Fc)-incorporated nickel sulfide nanostructured electrocatalysts (Fc-NiS) using a one-step facile solvothermal method for water-splitting reactions. Fc-NiS exhibited exceptional electrocatalytic activity under highly alkaline conditions, evident from its peak current density of 345 mA cm-2 , surpassing the 153 mA cm-2 achieved by the pristine nickel sulfide (NiS) catalysts. Introducing ferrocene enhances electrical conductivity and facilitates charge transfer during water-splitting reactions, owing to the inclusion of iron metal. Fc-NiS exhibits a very small overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of 50.46 mV dec-1 , indicating its superior charge transfer characteristics for the three-electron transfer process involved in water splitting. This outstanding electrocatalytic performance is due to the synergistic effects embedded within the nanoscale architecture of Fc-NiS. Furthermore, the Fc-NiS catalyst also shows a stable response for the water-splitting reactions. It maintains a steady current density with an 87% retention rate for 25 hours of continuous operation, indicating its robustness and potential for prolonged electrolysis processes.

4.
Chem Rec ; 24(1): e202300141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724006

RESUMO

Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.

5.
Chem Rec ; 24(1): e202300161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37582638

RESUMO

Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g-1 , signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g-1 , highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.

6.
Chemosphere ; 349: 140729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989439

RESUMO

Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Poluentes da Água , Purificação da Água , Estruturas Metalorgânicas/química , Metais Pesados/química , Corantes , Purificação da Água/métodos , Adsorção
7.
Chem Rec ; 24(1): e202300155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435960

RESUMO

In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.

8.
J Colloid Interface Sci ; 658: 758-771, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150932

RESUMO

Solar-driven desalination is considered an alternative to the conventional desalination due to its nearly zero carbon footprint and ease of operating in remote areas. Water can be purified wherever sunlight is available, providing a viable solution to water shortage. Metal chalcogenide-based materials are revolutionary for solar evaporators due to their excellent photothermal conversion efficiency, facile synthesis methods, stability, and low cost. Herein we present a prototype Bi-doped CoTe nano-solar evaporator embedded on leno weave cotton gauze (Bi/CoTe@CG) using the sonication process. The nano-solar evaporator was synthesized using a simple hydrothermal approach to provide an opportunity to scale up. The as designed solar evaporator consisting of 5 % Bi/CoTe@CG showed an excellent water flux of 2.38 kg m-2 h-1 upon one sun radiation (1 kW m-2), considered among the highest literature-reported values. The introduced solar evaporator showed excellent solar efficiency of 96.7 %, good stability, and reusability for five cycles of one hour. The best doping ratio of Bi in CoTe was obtained as Bi0.5Co9.5Te with a contact angle of 11.9° in powder form. The hydrophilic nature of the designed solar-evaporator increased the water interaction with the embedded nano-solar evaporator, which helps the transfer of the heat to nearby water molecules, break their hydrogen bonding and increase the evaporation rate. The ion concentration, of the desalinated pure water collected using Bi/CoTe@CG, decreased by many orders of magnitude and it is far below the limit of WHO standards for Na+ and K+. Thus, a self-floating Bi-doped CoTe nano-solar evaporator deposited on cotton gauze (CG) is an excellent solar evaporator for seawater desalination. The proposed solar evaporator is another step towards introducing environmentally friendly desalination methods.

9.
Chem Asian J ; : e202300870, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943100

RESUMO

Amorphous inorganic perovskites have attracted significant attention as efficient electrocatalysts due to their unique structural flexibility and good catalytic activity. In particular, the disordered structure and a surface rich in defects such as oxygen vacancies can contribute to the superior electrocatalytic activity of amorphous oxides compared to their crystalline counterpart. In this work, we report the synthesis of LaCoO3 , followed by an amorphization process through urea reduction with tailored modifications. The as-synthesized catalysts were thoroughly tested for their performance in oxygen evolution reaction (OER), Remarkably, the amorphous LaCoO3 synthesized at 450 °C (referred to as LCO-4) exhibits excellent OER catalytic activity. At an overpotential of 310 mV, it achieved a current density of 10 mA/cm-2 , exceedingly fast to 1 A/cm-2 at an overpotential of only 460 mV. Moreover, LCO-4 exhibited several advantageous features compared to pristine LaCoO3 and LaCoO3 amorphized at other two temperatures (350 °C, LCO-3, and 550 °C, LCO-5). The amorphized LCO-4 catalyst showed a higher electrochemically active surface area, a key factor in boosting catalytic performance. Additionally, LCO-4 demonstrated the lowest Tafel slope of 70 mVdec-1 , further highlighting its exceptional OER activity. Furthermore, the long-term stability of LCO-4 is notably superior than pristine LaCoO3 (LCO-P) and the other amorphized samples (LCO-3 and LCO-5). The enhanced catalytic activity of LCO-4 can be attributed to its unique disordered structure, small crystallite size, and higher concentration of oxygen vacancies in the final catalyst.

10.
RSC Adv ; 13(34): 23547-23557, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37555091

RESUMO

Developing an efficient and non-precious bifunctional catalyst capable of performing water splitting and organic effluent degradation in wastewater is a great challenge. This article reports an efficient bifunctional nanocatalyst based on NiCo2O4, synthesized using a simple one-pot co-precipitation method. We optimized the synthesis conditions by varying the synthesis pH and sodium dodecyl sulfate (SDS) concentrations. The prepared catalyst exhibited excellent catalytic activity for the electrochemical oxygen evolution reaction (OER) and simultaneous methylene blue (MB) dye degradation. Among the catalysts, the catalyst synthesized using 1 g SDS as a surfactant at 100 °C provided the highest current density (658 mA cm-2), lower onset potential (1.34 V vs. RHE), lower overpotential (170 mV @ 10 mA cm-2), and smallest Tafel slope (90 mV dec-1) value. Furthermore, the OH˙ radicals produced during the OER electrochemically degraded the MB to 90% within 2 hours. The stability test conducted at 20 mA cm-2 showed almost negligible loss of the electrochemical response for OER, with 99% retention of the original response. These results strongly suggest that this catalyst is a promising candidate for addressing the challenges of wastewater treatment and energy generation.

11.
Environ Res ; 234: 116550, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437862

RESUMO

A facile two-step hydrothermal method was successfully used to prepare a photocatalyst Bi2WO6/WS2 heterojunction for methyl blue (MB) photodegradation. Fabricated photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). Band gap measurements were carried out by diffuse reflectance spectroscopy (DRS). Results indicated that the prepared heterostructure photocatalyst has increased visible light absorption. Photocatalytic performance was evaluated under sunlight irradiation for methylene blue (MB) degradation as a model dye. Variations in pH (4-10), amount of catalyst (0.025-0.1 g/L), and initial MB concentrations (5-20 ppm) were carried out, whereas all prepared catalysts were used to conduct the tests with a visible spectrophotometer. Degradation activity improved with the pH increase; the optimum pH was approximately 8. Catalyst concentration is directly related to degradation efficiency and reached 93.56% with 0.075 g of the catalyst. Among tested catalysts, 0.01 Bi2WO6/WS2 has exhibited the highest activity and a degradation efficiency of 99.0% in 40 min (min) for MB. MB photodegradation follows pseudo-first-order kinetics, and obtained values of kapp were 0.0482 min-1, 0.0337 min-1, 0.0205 min-1, and 0.0087 min-1 for initial concentrations of 5 ppm, 10 ppm, 15 ppm, and 20 ppm, respectively. The catalyst was reused for six cycles with a negligible decrease in the degradation activity. Heterostructure 0.01 Bi2WO6/WS2 has exhibited a photocurrent density of 16 µA cm-2, significantly higher than 2.0 and 4.5 µA cm-2 for the pristine WS2 and Bi2WO6, respectively. The findings from these investigations may serve as a crucial stepping stone towards the remediation of polluted water facilitated by implementing such highly efficient photocatalysts.


Assuntos
Azul de Metileno , Luz Solar , Azul de Metileno/química , Fotólise , Luz , Catálise
12.
ACS Omega ; 8(11): 9797-9806, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969434

RESUMO

Doped Sb2Te3 narrow-band-gap semiconductors have been attracting considerable attention for different electronic and thermoelectric applications. Trivalent samarium (Sm)- and indium (In)-doped Sb2Te3 microstructures have been synthesized by the economical solvothermal method. Powder X-ray diffraction (PXRD) was used to verify the synthesis of single-phase doped and undoped Sb2Te3 and doping of Sm and In within the crystal lattice of Sb2Te3. Further, the morphology, structure elucidation, and stability have been investigated systematically by scanning electron microscopy (SEM), Raman analysis, and thermogravimetric analysis (TGA). These analyses verified the successful synthesis of hexagonal undoped Sb2Te3 (AT) and (Sm, In)-doped Sb2Te3 (SAT, IAT) microstructures. Moreover, the comparison of dielectric parameters, including dielectric constant, dielectric loss, and tan loss of AT, SAT, and IAT, was done in detail. An increment in the electrical conductivities, both AC and DC, from 1.92 × 10-4 to 4.9 × 10-3 Ω-1 m-1 and a decrease in thermal conductivity (0.68-0.60 W m-1 K-1) were observed due to the doping by trivalent (Sm, In) dopants. According to our best knowledge, the synthesis and dielectric properties of (Sm, In)-doped and undoped Sb2Te3 in comparison with their electrical properties and thermal conductivity have not been reported earlier. This implies that appropriate doping with (Sm, In) in Sb2Te3 is promising to enhance the electronic and thermoelectric behavior.

13.
Membranes (Basel) ; 13(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676920

RESUMO

The hydrogen evolution reaction (HER) is a developing and promising technology to deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production methods. Nevertheless, the most active platinum (Pt) metal-based catalysts for the HER are subject to high cost and substandard stability. Therefore, a highly efficient, low-cost, and stable HER electrocatalyst is urgently desired to substitute Pt-based catalysts. Due to their low cost, outstanding stability, low overpotential, strong electronic interactions, excellent conductivity, more active sites, and abundance, transition metal tellurides (TMTs) and transition metal phosphides (TMPs) have emerged as promising electrocatalysts. This brief review focuses on the progress made over the past decade in the use of TMTs and TMPs for efficient green hydrogen production. Combining experimental and theoretical results, a detailed summary of their development is described. This review article aspires to provide the state-of-the-art guidelines and strategies for the design and development of new highly performing electrocatalysts for the upcoming energy conversion and storage electrochemical technologies.

14.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677631

RESUMO

The rapid depletion of fossil fuels and environmental pollution has motivated scientists to cultivate renewable and green energy sources. The hydrogen economy is an emerging replacement for fossil fuels, and photocatalytic water splitting is a suitable strategy to produce clean hydrogen fuel. Herein, the photocatalyst (PdO.TiO2) is introduced as an accelerated photoelectrochemical oxygen evolution reaction (OER). The catalyst showed significant improvement in the current density magnitude from 0.89 (dark) to 4.27 mA/cm2 (light) during OER at 0.5 V applied potential. The as-synthesized material exhibits a Tafel slope of 170 mVdec-1 and efficiency of 0.25% at 0.93 V. The overall outcomes associated with the photocatalytic activity of PdO.TiO2 demonstrated that the catalyst is highly efficient, thereby encouraging researchers to explore more related catalysts for promoting facile OER.

15.
Front Chem ; 10: 1014248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277340

RESUMO

Chiral Metal-Organic Frameworks (CMOFs) are unique crystalline and porous class of materials which is composed of organic linkers and metal ions. CMOFs surpass traditional organic and inorganic porous materials because of their tunable shape, size, functional diversity, and selectivity. Specific applications of CMOFs may be exploited by introducing desired functional groups. CMOFs have chiral recognition abilities, making them unique for chiral compound synthesis and separation. The CMOFs can be synthesized through different approaches. Two main approaches have been discussed, i.e., direct and indirect synthesis. Synthetic strategies play an essential role in getting desired properties in MOFs. CMOFs find potential applications in adsorption, asymmetric catalysis, luminescence, degradation, and enantioselective separation. The MOFs' porosity, stability, and reusability make them an attractive material for these applications. The plethora of applications of CMOFs have motivated chemists to synthesize novel MOFs and number of MOFs have been ever-escalating. Herein, the synthetic methods of CMOFs and their various applications have been discussed.

16.
J Colloid Interface Sci ; 628(Pt B): 141-152, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987153

RESUMO

The high selectivity in the hydrogenation reactions of α, ß-unsaturated aldehydes is always a demanding task. Precious Pt-based catalysts play a pivotal role in selective catalytic hydrogenation of α, ß-unsaturated aldehydes, but controlling the selectivity is still a great challenge. Herein, the Pt nanoparticles were encaged within the mesopores of amines (-NH2) functionalized MOFs via polyol reduction method as an efficient approach to enhance the selectivity of desired carbonyls bond reduction. The as-prepared 3-Pt/MOF-NH2(x) catalysts retained the inherent properties of MOF-NH2(x) supports such as crystallinity, surface area, pore texture, and surface acidity. Remarkably, the amines modified MOFs supported Pt-based catalysts (3-Pt/MOF-NH2(x)) improved the selective hydrogenation of carbonyls (CO) bond in cinnamaldehyde (CAL) and Furfural (FFL) with a higher selectivity (≥80 %) under mild conditions as compared to other reported catalysts. The improved catalytic performance for the selective hydrogenation of carbonyls (CO) bond is credited to the nitrogen (N) heteroatom of the amines group existing in the skeleton of MOFs and somewhat to the steric effect induced by mesopores of MOFs. The N heteroatom not only helps in the high uniform dispersion and stabilization of small-sized Pt nanoparticles (≈2nm) but also adjust the electron movement (electronic density) via synergistic effect resulting from the N to the vacant d-orbital of active Pt nanoparticles confined within MOFs, leading to more new interfacial electrophilic and nucleophilic sites, which are beneficial for selective hydrogenation of CO bond. Besides, the steric effect induced by mesopores of MOFs, encaging Pt nanoparticles, can also enhance the selective adsorption of the CO bond to interact with the catalyst active sites, resulting in higher selective hydrogenation of CO bond.

17.
RSC Adv ; 12(24): 15564-15574, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35685173

RESUMO

The goal of this work was to synthesize new cerium oxide-based nano-additives to minimise emissions from spark ignition (SI) engines fueled with gasoline blends, such as carbon monoxide (CO), unburned hydrocarbons (HC) and oxides of nitrogen (NO x ). To investigate the effect of transition metal dopants on their respective catalytic oxidation activity, nano-sized CeO2 catalysts co-doped with Mn, Fe, Cu and Ag ions were successfully produced by a simple hydrothermal technique. The synthesis of nano-catalysts with cubic fluorite geometry was confirmed by XRD data. The addition of transition metal ions to the CeO2 lattice increased the concentration of structural defects like oxygen vacancies and Ce3+ ions, which are advantageous for the catalytic oxidation reaction, as also supported by XAFS and RAMAN analysis. Further, nano-gasoline fuel emission parameters are measured and compared to straight gasoline fuel. The results demonstrated that harmful exhaust pollutants such as CO, HC and NO x were significantly reduced. The high surface area, better redox characteristics and presence of additional oxygen vacancy sites or Ce3+ ions have been linked to the improved catalytic performance of the synthesized catalyst.

18.
Front Chem ; 10: 906031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615318

RESUMO

In this study, Ag@In2O3 modified nickel foam (NF) was reported for its role as a non-enzymatic glucose sensor. Ag@In2O3 was prepared by a simple two-step method; preparation of a metal-organic framework (MOF) MIL-68(In) by solvothermal method, entrapment of Ag + by adding AgNO3 then drying it for 2 h to complete the entrapment process and subsequent calcination at 650°C for 3 h. The Ag@In2O3 modified NF was employed as a non-enzymatic glucose sensor to determine glucose concentrations in an alkaline medium. Two linear ranges were obtained from Ag@In2O3 modified electrode, i.e., 10 µM to 0.8 mM and 0.8-2.16 mM with a sensitivity of 3.31 mA mM-1 cm-2 and 1.51 mA mM-1 cm-2 respectively, with a detection limit of 0.49 µM. Ag@In2O3 modified NF exhibited high selectivity for glucose, among other interfering agents.

19.
Nanomaterials (Basel) ; 11(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835581

RESUMO

This research endeavor aimed to synthesize the lead (II) diphenyldiselenophosphinate complex and its use to obtain lead selenide nanostructured depositions and further the impedance spectroscopic analysis of these obtained PbSe nanostructures, to determine their roles in the electronics industry. The aerosol-assisted chemical vapor deposition technique was used to provide lead selenide deposition by decomposition of the complex at different temperatures using the glass substrates. The obtained films were revealed to be a pure cubic phase PbSe, as confirmed by X-ray diffraction analysis. SEM and TEM micrographs demonstrated three-dimensionally grown interlocked or aggregated nanocubes of the obtained PbSe. Characteristic dielectric measurements and the impedance spectroscopy analysis at room temperature were executed to evaluate PbSe properties over the frequency range of 100 Hz-5 MHz. The dielectric constant and dielectric loss gave similar trends, along with altering frequency, which was well explained by the Koops theory and Maxwell-Wagner theory. The effective short-range translational carrier hopping gave rise to an overdue remarkable increase in ac conductivity (σac) on the frequency increase. Fitting of a complex impedance plot was carried out with an equivalent circuit model (Rg Cg) (Rgb Qgb Cgb), which proved that grains, as well as grain boundaries, are responsible for the relaxation processes. The asymmetric depressed semicircle with the center lower to the impedance real axis provided a clear explanation of non-Debye dielectric behavior.

20.
Nanomaterials (Basel) ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923371

RESUMO

This research aims to synthesize the Bis(di-isobutyldithiophosphinato) nickel (II) complex [Ni(iBu2PS2)] to be employed as a substrate for the deposition of nickel sulfide nanostructures, and to investigate its dielectric and impedance characteristics for applications in the electronic industry. Various analytical tools including elemental analysis, mass spectrometry, IR, and TGA were also used to further confirm the successful synthesis of the precursor. NiS nanostructures were grown on the glass substrates by employing an aerosol assisted chemical vapor deposition (AACVD) technique via successful decomposition of the synthesized complex under variable temperature conditions. XRD, SEM, TEM, and EDX methods were well applied to examine resultant nanostructures. Dielectric studies of NiS were carried out at room temperature within the 100 Hz to 5 MHz frequency range. Maxwell-Wagner model gave a complete explanation of the variation of dielectric properties along with frequency. The reason behind high dielectric constant values at low frequency was further endorsed by Koops phenomenological model. The efficient translational hopping and futile reorientation vibration caused the overdue exceptional drift of ac conductivity (σac) along with the rise in frequency. Two relaxation processes caused by grains and grain boundaries were identified from the fitting of a complex impedance plot with an equivalent circuit model (Rg Cg) (Rgb Qgb Cgb). Asymmetry and depression in the semicircle having center present lower than the impedance real axis gave solid justification of dielectric behavior that is non-Debye in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...